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The Role of Exosystems in Output Regulation

Lassi Paunonen

In this paper we study the role of the exosystem in the theory
of output regulation for linear infinite-dimensional systems. The
main result of this paper shows that a stabilizing autonomous
controller that achieves output tracking of an almost periodic
reference signal is also capable of tracking any signal generated
by a full exosystem. Moreover, given an almost periodic reference
signal, we present a method for constructing a minimal exosystem
generating this signal.

Index Terms—Output regulation, distributed parameter sys-
tem, feedback control.

I. INTRODUCTION

The problem of output regulation for a linear system

ẋ(t) = Ax(t) +Bu(t) + wd(t), x(0) = x0 ∈ X (1a)
y(t) = Cx(t) +Du(t) (1b)

requires designing a controller in such a way that the output
y(t) asymptotically approaches a given reference signal yref (t)
despite an external disturbance signal wd(t) affecting the state
of the plant. In applications the output regulation problem is
encountered often in, for example, robotics, navigation and
process control.

In the theory of output regulation for mathematical sys-
tems [1]–[4] the most common approach is to consider a
class of reference and disturbance signals, instead of designing
a controller to achieve tracking of a single reference signal
yref (t). More precisely, the controller is chosen in such a way
that the controlled system achieves asymptotic tracking for any
reference and disturbance signals generated by an exosystem
of the form

v̇(t) = Sv(t), v(0) = v0 ∈W (2a)
wd(t) = Ev(t) (2b)
yref (t) = Fv(t). (2c)

The class of reference and disturbance signals generated with
the different initial states v0 of the exosystem depends on
the space W and on the chosen operators S, E, and F .
Recently, there has been particular interest in output regulation
with reference signals generated by exosystems on infinite-
dimensional spaces W [5]–[8]. Such exosystems are neces-
sary in studying the output tracking of nonsmooth periodic
reference signals or almost periodic functions.

Considering the output regulation problem for the class of
signals generated by an exosystem (2) has several advantages.
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In particular, the solvability of the control problem and the
controllers achieving output tracking can be characterized
using the so-called regulator equations [1], [3], [8], which
are independent of time. Moreover, there are well-known and
effective techniques for controller design for output regulation
with exosystems of the form (2).

However, in the case of an infinite-dimensional exosystem,
the class of signals generated by (2) may be very large [9, Sec.
3]. In some applications, such as in process control or robotics,
the controlled system may only be required to track a single
reference signal y∗ref . Nevertheless, the solution of the output
regulation problem provides a controller that achieves output
tracking for all reference signals generated by some exosystem
capable of producing y∗ref as its output. In such a situation, it
is natural to ask whether the controller could be simplified
by instead only considering the control problem for the single
signal y∗ref . In this paper we show that such an approach would
not lead to a simplified controller. In particular, as our main
result we prove that a linear time-invariant controller solving
the output regulation problem for some specific signals w∗d and
y∗ref necessarily solves the same problem for a full exosystem
generating the signals w∗d and y∗ref . First and foremost, this
result illustrates a fundamental property of linear autonomous
controllers.

Throughout the paper we consider an infinite-dimensional
linear system (1) with possibly unbounded input and output
operators B and C, respectively. The reference and disturbance
signals w∗d and y∗ref are assumed to be nonsmooth almost
periodic functions. As our first main result, we present a
method for constructing a minimal exosystem generating the
signals w∗d and y∗ref as its output. This construction generalizes
results in [9], [10]. In particular, our approach yields easily
verifiable conditions on the signals w∗d and y∗ref such that the
solvability of the Sylvester equation in the regulator equations
is guaranteed.

The paper is organized as follows. In Section II we state
the main assumptions on the plant and the controller. In
Section III we construct the minimal exosystem generating the
given reference and disturbance signals. The output regulation
problems for both the individual signals w∗d and y∗ref , and for a
full exosystem (2) are defined in Section IV. In Section V we
show that a stabilizing controller solves one of these problems
if and only if it solves both of them. Section VI contains
concluding remarks.

If X and Y are Banach spaces and A : X → Y is
a linear operator, we denote by D(A), N (A) and R(A)
the domain, kernel and range of A, respectively. The space
of bounded linear operators from X to Y is denoted by
L(X,Y ). If A : X → X , then σ(A), σp(A) and ρ(A) denote
the spectrum, the point spectrum and the resolvent set of A,
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respectively. For λ ∈ ρ(A) the resolvent operator is given by
R(λ,A) = (λI −A)−1. The dual pairing on a Banach space
and the inner product on a Hilbert space are both denoted by
〈·, ·〉.

II. ASSUMPTIONS ON THE PLANT AND THE CONTROLLER

We assume the operators of the plant (1) on a Banach
space X are such that A : D(A) ⊂ X → X generates
a strongly continuous semigroup T (t) on X on X . The
input and output operators may be unbounded in such a way
that B ∈ L(U,X−1) and C ∈ L(X1, Y ), where X−1 and
X1 are scale spaces related to the operator A (see [11] for
details), U is a Banach space and Y = Cp. We denote by
A−1 : X ⊂ X−1 → X−1 the extension of the operator A
to the space X−1. Finally, the feedthrough operator satisfies
D ∈ L(U, Y ).

We assume the output y(t) of the plant is available for
measurement, and define the regulation error as e(t) = y(t)−
yref (t). A dynamic error feedback controller on a Banach space
Z is of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z (3a)
u(t) = Kz(t) (3b)

where the system operator G1 : D(G1) ⊂ Z → Z generates
a strongly continuous semigroup, G2 ∈ L(Y,Z), and K ∈
L(Z1, U).

If the reference and disturbance signals yref and wd, re-
spectively, are outputs of the exosystem (2), then the closed-
loop system consisting of the plant and the controller can be
written on the space Xe = X × Z (with norm ‖(x, z)T ‖2 =
‖x‖2 + ‖z‖2) as

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0 = ( x0
z0 ) (4a)

e(t) = Cexe(t) +Dev(t), (4b)

where Ce = (C DK), De = −F ,

Ae =

(
A−1 BK
G2C G1 + G2DK

)
and Be =

(
E
−G2F

)
.

The main standing assumption on the unboundedness of the
operators in the plant and the controller is that the closed-loop
system operator Ae with maximal domain generates a strongly
continuous semigroup on Xe. This condition guarantees that
the closed-loop system has a well-defined and continuous state
xe(t).

Assumption 1. Throughout the paper (A,B,C,D) and
(G1,G2,K) are such that Ae with domain

D(Ae) =

{(
x
z

)
∈ D(C)×D(K)

∣∣∣∣ A−1x+BKz ∈ X
}
.

generates a strongly continuous semigroup Te(t) on Xe, and
Ce is relatively bounded with respect to Ae.

In the statements of the output regulation problems for both
the individual signals w∗d and y∗ref and for the full exosystem
(S,E, F ) in Section IV it is required that the controller stabi-
lizes the closed-loop system strongly. Therefore, throughout
the paper we assume that the controller is such that the

closed-loop system semigroup Te(t) is strongly stable and
σ(Ae) ∩ σ(S) = ∅.

The results in this paper only use the properties of the
closed-loop system (4), and therefore they do not depend on
the type of the controller. For example, if B ∈ L(X,U), we
can instead consider a static state feedback control law

u(t) = Kx(t) + Lv(t)

where v(t) is the state of the exosystem (2), K ∈ L(X1, U),
and L ∈ L(W,U). For such a controller the closed-loop
system can be written in the form (4) on the space Xe = X
with operators

Ae = A−1 +BK, Be = BL+ E

Ce = C +DK, De = DL− F.

In Assumption 1 we then again assume that the operator Ae =
A−1 +BK with the domain D(Ae) = {x ∈ D(K) | A−1x+
BKx ∈ X } generates a strongly continuous semigroup on
Xe = X and that Ce = C + DK is relatively bounded with
respect to Ae. With these modifications, the theory developed
in [11] as well as all the results presented in this paper remain
valid.

III. EXOGENEOUS SIGNALS AND THE EXOSYSTEM

In this section we start with given almost periodic reference
and disturbance signals, and construct a minimal exosystem
generating these signals. The signals w∗d and y∗ref are assumed
to be nonsmooth almost periodic functions of the form

w∗d(t) =
∑
k∈Z

ake
iωkt, y∗ref (t) =

∑
k∈Z

bke
iωkt, (5)

where (ωk)k∈Z is a sequence of distinct frequencies,
(ak)k∈Z ∈ `1(X), and (bk)k∈Z ∈ `1(Y ). If for each k ∈ Z at
least one of the coefficients ak and bk is nonzero, then none
of the frequencies (ωk)k∈Z is redundant.

Our aim is to choose a Hilbert space W and the operators
S : D(S) ⊂ W → W , E ∈ L(W,X), and F ∈ L(W,Y ) in
such a way that the signals y∗ref and w∗d are produced as outputs
of an exosystem of the form (2) for some initial state v∗0 ∈
D(S). We make the following assumption on the behaviour
of the coefficients of the signals w∗d and y∗ref .

Assumption 2. Assume there exists (αk)k∈Z ⊂ (0, 1] for
which ((1+|ωk|)αk)k∈Z ∈ `2(R), and the coefficients (ak)k∈Z
and (bk)k∈Z satisfy

sup
k∈Z

‖ak‖+ ‖bk‖
α2
k

<∞

and sup
k∈Z
‖R(iωk, Ae)‖2

‖ak‖+ ‖bk‖
α2
k

<∞.

If the closed-loop system is exponentially stable, then the
resolvent R(λ,Ae) is uniformly bounded on the imaginary
axis, and the second condition becomes redundant. However,
in the case of exogeneous signals with an infinite number
of frequencies it is in general impossible to stabilize the
closed-loop system exponentially. In such a situation the norms
‖R(iωk, Ae)‖ may grow as |k| → ∞. In particular, this
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is the case if Xe is a Hilbert space and if the closed-loop
system is stabilized polynomially as in [12]. The condition in
Assumption 2 then requires that the norms ‖ak‖ and ‖bk‖
of the coefficients decay sufficiently fast compared to the
growth of the resolvent norms. Finally, if the signals w∗d
and y∗ref have finite numbers of frequency components, the
conditions in Assumption 2 are automatically satisfied (see
also the comments in Remark 5).

The following theorem gives appropriate choices for an
exosystem generating the reference and disturbance signals.
Similar results were presented in [10] for periodic reference
signals, and in [9, Lem. 3] for polynomially growing reference
signals and corresponding block diagonal exosystems. The
following theorem generalizes the corresponding results in [9],
[10] by introducing the sequence (αk)k∈Z as a design param-
eter. As we will see in Theorem 4, the sequence (αk)k∈Z en-
sures the solvability of the Sylvester equation ΣS = AeΣ+Be
in the regulator equations. Finally, if the signals w∗d and y∗ref
in (5) are such that for every k ∈ Z either ak or bk is nonzero,
then the constructed exosystem is minimal in the sense that
S contains only those frequencies ωk that are necessary for
generating the signals w∗d and y∗ref .

Theorem 3. Let (αk)k∈Z ∈ `2(C) be as in Assumption 2.
Choose W = `2(C) with an orthonormal basis {φk}k∈Z, and
choose the system operator of the exosystem (2) to be

Sv =
∑
k∈Z

iωk〈v, φk〉φk,

D(S) =
{
v ∈W

∣∣ ∑
k∈Z

ω2
k|〈v, φk〉|2 <∞

}
.

The output operators are chosen as

Ev =
∑
k∈Z

1

αk
〈v, φk〉ak, Fv =

∑
k∈Z

1

αk
〈v, φk〉bk.

The signals w∗d and y∗ref are then generated with the choice

v∗0 =
∑
k∈Z

αkφk ∈ D(S)

of the initial state of the exosystem.

Proof. The chosen operator S generates an isometric group
TS(t) on W , and its spectrum satisfies σ(S) = σp(S) =
{iωk}k.

For every v ∈W we have

‖Ev‖ ≤
∑
k∈Z

‖ak‖
αk
|〈v, φk〉| ≤

[∑
k∈Z

‖ak‖2

α2
k

] 1
2
[∑
k∈Z
|〈v, φk〉|2

] 1
2

≤ ‖v‖
(

sup
k∈Z

‖ak‖
α2
k

∑
k∈Z
‖ak‖

) 1
2

,

where supk∈Z
‖ak‖
α2

k

∑
k∈Z‖ak‖ < ∞ due to Assumption 2

and (ak)k∈Z ∈ `1(X). We therefore have E ∈ L(W,Y ).
Analogously it can be shown that F ∈ L(W,Y ).

The assumption ((1 + |ωk|)αk)k∈Z ∈ `2(R) and 〈v∗0 , φk〉 =
αk immediately imply that the initial state v∗0 satisfies v∗0 ∈W .

Moreover, we have∑
k∈Z

ω2
k|〈v∗0 , φk〉|2 =

∑
k∈Z

ω2
kα

2
k ≤

∑
k∈Z

(1 + |ωk|)2α2
k <∞,

and thus v∗0 ∈ D(S).
Finally, the reference and disturbance signals generated by

the exosystem with the initial state v∗0 are given by

wd(t) = ETS(t)v∗0 =
∑
k∈Z

eiωkt〈v∗0 , φk〉Eφk

=
∑
k∈Z

eiωktαk
ak
αk

=
∑
k∈Z

ake
iωkt = w∗d(t)

yref (t) = FTS(t)v∗0 =
∑
k∈Z

eiωkt〈v∗0 , φk〉Fφk

=
∑
k∈Z

eiωktαk
bk
αk

=
∑
k∈Z

bke
iωkt = y∗ref (t).

We chose the exosystem in such a way that the initial state
v∗0 generating the reference and disturbance signals w∗d and y∗ref
is in the domain D(S) of the system operator. This is necessary
since we allow the operators C and K to be unbounded, which
in turn requires that the initial states of the exosystem in the
output regulation problem satisfy v0 ∈ D(S) [11]. If these two
operators are bounded, there is no difficulty in considering
the output regulation problem for initial states v0 ∈ W of
exosystem, see [8] for details. In this case, the conditions
of Assumption 2 can be relaxed by replacing the condition
((1 + |ωk|)αk)k∈Z ∈ `2(R) with (αk)k∈Z ∈ `2(R) (which
is a weaker requirement whenever the sequence (ωk)k∈Z is
unbounded).

Theorem 4. Assume Te(t) is strongly stable and σ(Ae) ∩
σ(S) = ∅. If the signals w∗d and y∗ref satisfy Assumption 2
and if the exosystem (S,E, F ) is chosen as in Theorem 3,
then the Sylvester equation ΣS = AeΣ + Be has a unique
solution Σ ∈ L(W,Xe) satisfying Σ(D(S)) ⊂ D(Ae).

Proof. If E and F are chosen as in Theorem 3, then for all
k ∈ Z we have

‖Beφk‖ =

∥∥∥∥( Eφk
−G2Fφk

)∥∥∥∥ ≤ max{1, ‖G2‖}
1

αk

∥∥∥∥(akbk
)∥∥∥∥

= max{1, ‖G2‖}
1

αk

√
‖ak‖2 + ‖bk‖2

=
√

2 max{1, ‖G2‖}
1

αk
(‖ak‖+ ‖bk‖).

Let x′e ∈ X ′e be such that ‖x′e‖ ≤ 1. Then∑
k∈Z
|〈R(iωk, Ae)Beφk, x

′
e〉|2 ≤

∑
k∈Z
‖R(iωk, Ae)‖2‖Beφk‖2

≤ 2 max{1, ‖G2‖2}
∑
k∈Z
‖R(iωk, Ae)‖2

(‖ak‖+ ‖bk‖)2

α2
k

≤ 2 max{1, ‖G2‖2}
(

sup
k∈Z
‖R(iωk, Ae)‖2

‖ak‖+ ‖bk‖
α2
k

)
×
∑
k∈Z

(‖ak‖+ ‖bk‖) <∞
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due to Assumption 2, (ak)k∈Z ∈ `1(X), and (bk)k∈Z ∈ `1(Y ).
Since the bound is independent of x′e ∈ Xe, and since σ(Ae)∩
σ(S) = ∅ by assumption, we have from [7, Lem. 6] that the
Sylvester equation ΣS = AeΣ + Be has a unique bounded
solution Σ ∈ L(W,Xe) satisfying Σ(D(S)) ⊂ D(Ae), and Σ
is given by

Σv =
∑
k∈Z
〈v, φk〉R(iωk, Ae)Beφk, v ∈W.

Remark 5. In the beginning of this section we assumed that
the reference and disturbance signals are of the form (5).
However, if only a finite number of the coefficients in (5)
are nonzero, the signals can instead be written as

w∗d(t) =

N∑
k=1

ake
iωkt y∗ref (t) =

N∑
k=1

bke
iωkt,

for some N ∈ N, a sequence of distinct frequencies (ωk)Nk=1 ⊂
R, and coefficients (ak)Nk=1 ⊂ X and (bk)Nk=1 ⊂ Y . In this
situation it is possible to simplify many of the proofs presented
in this paper. Indeed, if the set Z of indices is replaced with the
finite index set {1, . . . , N}, the conditions in Assumption 2 are
automatically satisfied for any sequence (αk)Nk=1 ⊂ (0, 1], the
unique solvability of the Sylvester equation ΣS = AeΣ +Be
is guaranteed by the assumption σ(Ae) ∩ σ(S) = ∅, and
many of the series appearing in the proofs are reduced to
finite sums (and are thus automatically convergent). Most
importantly, the exosystem constructed in Theorem 3 can be
chosen to be a finite-dimensional linear system on the space
W = span{φ1, . . . , φN} with a system operator

S =

N∑
k=1

iωk〈·, φk〉φk ∈ L(W ).

IV. THE TWO OUTPUT REGULATION PROBLEMS

In this section we formulate the output regulation problem
for individual reference and disturbance signals, as well as for
the class of signals generated by an exosystem of the form (2).
We begin with the problem for individual signals w∗d and y∗ref .
In this version, it is also only required that the regulation error
decays asymptotically for some initial state xe0 ∈ D(Ae) of
the closed-loop system.

The Output Regulation Problem for (y∗ref , w
∗
d). Find

(G1,G2,K) such that the following are satisfied:
(1) The semigroup Te(t) generated by the closed-loop system

operator Ae is strongly stable.
(2) For the exogeneous signals w∗d and y∗ref and for some

initial state xe0 ∈ D(Ae) the regulation error goes to
zero asymptotically, i.e., limt→∞ e(t) = 0.

On the other hand, the output regulation problem for an
exosystem with operators (S,E, F ) is defined as follows [7],
[8], [11].

The Output Regulation Problem for (S,E, F ). Find
(G1,G2,K) such that the following are satisfied:

(1) The semigroup Te(t) generated by the closed-loop system
operator Ae is strongly stable.

(2) For all initial states v0 ∈ D(S) and xe0 ∈ D(Ae)
the regulation error goes to zero asymptotically, i.e.,
limt→∞ e(t) = 0.

The following theorem gives conditions for the solvability
of the output regulation problem for the exosystem (S,E, F )
using the regulator equations. This well-known result has
appeared in many different settings from classical finite-
dimensional control [1] to control of infinite-dimensional
system with various classes of exosystems [3], [6]–[8]. In [11]
it was presented for systems with unbounded control and
observation operators and infinite-dimensional exosystems.

Theorem 6. Let Assumption 2 be satisfied. If the controller
(G1,G2,K) is such that Ae generates a strongly stable semi-
group and σ(Ae) ∩ σ(S) = ∅, then it solves the output
regulation problem for the exosystem (S,E, F ) if and only
if the regulator equations

ΣS = AeΣ +Be (6a)
0 = CeΣ +De (6b)

on D(S) have a solution Σ ∈ L(W,Xe) satisfying Σ(D(S)) ⊂
D(Ae).

Proof. We have from Theorem 4 that the Sylvester equation
ΣS = AeΣ + Be has a solution Σ ∈ L(W,Xe). The result
now follows from [11, Thm. 3.1].

V. EQUIVALENCE OF THE OUTPUT REGULATION
PROBLEMS

In this section we show that any error feedback controller
(G1,G2,K) solving the output regulation problem for the given
signals w∗d and y∗ref solves the problem for all signals generated
by the corresponding exosystem given in Theorem 3. The
following theorem is the main result of this paper.

Theorem 7. Let Assumption 2 be satisfied and let the exosys-
tem be as in Theorem 3.

A controller which stabilizes the closed-loop system strongly
in such a way that σ(Ae) ∩ σ(S) = ∅ solves the output
regulation problem for the signals w∗d and y∗ref if and only
if it solves the output regulation problem for the exosystem
(S,E, F ).

Proof. The “if” part of the theorem follows directly from the
fact that the signals w∗d and y∗ref belong to the class of signals
generated by the exosystem (S,E, F ).

To prove the converse statement, assume that the controller
solves the output regulation problem for the signals w∗d and
y∗ref . Let v∗0 ∈ D(S) be the initial state of the exosystem
generating these signals, i.e., w∗d(t) = ETS(t)v∗0 and y∗ref (t) =
FTS(t)v∗0 for all t ≥ 0. Moreover, let xe0 ∈ D(Ae) be the
initial state of the closed-loop system for which the controller
solves the output regulation problem.

By Theorem 4 the Sylvester equation ΣS = AeΣ +Be has
a solution Σ ∈ L(W,Xe). Since the regulation error decays
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asymptotically, we have from [11, Thm. 3.3] that

‖(CeΣ +De)TS(t)v∗0‖ (7a)
≤ ‖(CeΣ +De)TS(t)v∗0 − e(t)‖+ ‖e(t)‖ → 0 (7b)

as t→∞.
By [11, Lem. 3.2] we have that (CeΣ + De)(I − S)−1 ∈

L(W,Y ). Since the space Y = Cp is finite-dimensional,
the Riesz Representation Theorem implies ((CeΣ +De)(I −
S)−1φk)k∈Z ∈ `2(Y ) (i.e., (CeΣ+De)(I−S)−1 is a Hilbert–
Schmidt operator), and thus∑
k∈Z

‖(CeΣ +De)φk‖2

1 + ω2
k

=
∑
k∈Z

∥∥∥(CeΣ +De)
1

1− iωk
φk

∥∥∥2
=
∑
k∈Z
‖(CeΣ +De)(I − S)−1φk‖2 <∞.

Combining this with ((1 + |ωk|)〈v∗0 , φk〉)k∈Z ∈ `2(C) implies∑
k∈Z
‖〈v∗0 , φk〉(CeΣ +De)φk‖

=
∑
k∈Z

(1 + |ωk|)|〈v∗0 , φk〉|
‖(CeΣ +De)φk‖

1 + |ωk|

=

(∑
k∈Z

(1 + |ωk|)2|〈v∗0 , φk〉|2
) 1

2

×
(∑
k∈Z

‖(CeΣ +De)φk‖2

(1 + |ωk|)2

) 1
2

<∞,

i.e., (〈v∗0 , φk〉(CeΣ +De)φk)k∈Z ∈ `1(Y ), and

(CeΣ +De)TS(t)v∗0 =
∑
k∈Z

eiωkt〈v∗0 , φk〉(CeΣ +De)φk.

For all N ∈ N the functions

t 7→
N∑

k=−N

eiωkt〈v∗0 , φk〉(CeΣ +De)φk

are trigonometric polynomials and∥∥∥∥(CeΣ +De)TS(t)v∗0 −
N∑

k=−N

eiωkt〈v∗0 , φk〉(CeΣ +De)φk

∥∥∥∥
=

∥∥∥∥ ∑
|k|>N

eiωkt〈v∗0 , φk〉(CeΣ +De)φk

∥∥∥∥
≤
∑
|k|>N

‖〈v∗0 , φk〉(CeΣ +De)φk‖ −→ 0

uniformly in t ∈ R as N → ∞. This concludes that the
function t 7→ (CeΣ+De)TS(t)v∗0 is almost periodic [13, Def.
4.5.6].

We will now show that the limit in (7) implies

(CeΣ +De)TS(t)v∗0 =
∑
k∈Z

eiωkt〈v∗0 , φk〉(CeΣ +De)φk = 0

for every t ∈ R. To this end, let ε > 0 and t ∈ R
be arbitrary. Due to (7) we can choose t0 > 0 such that
‖(CeΣ + De)TS(s)v∗0‖ < ε for every s ≥ t0. The function

(CeΣ+De)TS(·)v∗0 is almost periodic, and thus by [13, Thm.
4.5.7 & (4.23)] we have

‖(CeΣ +De)TS(t)v∗0‖ ≤ sup
s∈R
‖(CeΣ +De)TS(s)v∗0‖

= sup
s≥t0
‖(CeΣ +De)TS(s)v∗0‖ ≤ ε.

Since ε > 0 was arbitrary, we have (CeΣ +De)TS(t)v∗0 = 0.
Also t ∈ R was arbitrary, and we can thus conclude that
(CeΣ +De)TS(·)v∗0 ≡ 0.

Because the frequencies iωk are distinct by assumption,
(CeΣ + De)TS(·)v∗0 ≡ 0 is only possible if we have
〈v∗0 , φk〉(CeΣ +De)φk = 0 for all k ∈ Z [13, Cor. 4.5.9(a)].
The assumption 〈v∗0 , φk〉 = αk 6= 0 for every k ∈ Z further
implies (CeΣ + De)φk = 0 for all k ∈ Z. Finally, since
{φk}k∈Z is a basis of W , we must have CeΣ +De = 0. The
operator Σ is the solution of the Sylvester equation (6a), and
we have thus concluded that the regulator equations

ΣS = AeΣ +Be

0 = CeΣ +De

have a solution. By Theorem 6 the controller solves the output
regulation problem for the exosystem (S,E, F ).

VI. CONCLUSIONS

The results in this paper shed light on properties and limi-
tations of linear autonomous controllers. In particular we saw
that the tracking of a single nonsmooth signal y∗ref (·) : R→ C
requires the autonomous controller to have the ability to
track a class of signals that consist of any combination of
the frequency components in y∗ref . The controller design, on
the other hand, requires knowledge of the frequencies in the
reference and disturbance signals. In the case of, for example,
an unknown disturbance signal w∗d, the spectral content of the
signal must first be estimated and subsequently the controller
must be tuned to those frequencies. However, rejection of
unknown disturbance signals is a good example of a problem
where a better approach would be to use a control law that
depends on time [14].

Combined with the existing theory, the results presented
in this paper imply that output regulation of reference and
disturbance signals with an infinite number of frequency com-
ponents requires an infinite-dimensional controller. However,
if the reference and disturbance signals only have a finite
number of frequencies, they can be generated with a finite-
dimensional exosystem (see Remark 5). Output regulation for
a finite-dimensional exosystem can be achieved with a finite-
dimensional controller, for example, whenever the system to
be controlled is exponentially stable and its transfer function
belongs to the Callier–Desoer algebra [15]. Implementing and
approximating infinite-dimensional controllers, and the study
of their performance is an important topic for further research.
The challenges of implementing controllers for output regula-
tion of periodic signals have been discussed in detail in [16].

In this paper we have considered almost periodic refer-
ence and disturbance signals generated by diagonal infinite-
dimensional exosystems. Such signals are always uniformly
bounded. However, if the exosystem is allowed to be block
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diagonal, the output regulation problem can be studied for
polynomially growing signals of the form

y∗ref (t) = tny∗n(t) + tn−1y∗n−1(t) + · · ·+ y∗0(t),

where y∗j (·) are almost periodic functions of the form (5) [9,
Sec. 3]. In this situation the analysis becomes a bit more
involved, but all the results corresponding to the ones pre-
sented in this paper are also valid for infinite-dimensional
block diagonal exosystems.
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